## Question 1

Complete the ordered pairs so that each is a solution for the given of equation.
$2 x+y=10 \quad\left(5, \_\right),\left(\_, 10\right),\left(\_,-2\right),(0,-)$
For an ordered pair to be the solution of a given equation it must satisfy the equation.
Hence,

## Pair I

$2 x+y=10 \quad$ when $x=5$, then $y$ will be:
$2 * 5+y=10$
$10+y=10$
$y=0$
Therefore the Pair I $=(5,0)$

## Verification:

For an ordered pair to be the solution of a given equation it must satisfy the equation.
Putting the $x=5, y=0$ in the given equation.
$2 x+y=10$
2*5+0=10
$10=10$

## Hence verified

Pair II when $\mathrm{y}=10$, then x will be:
$2 x+y=10$
$2 x+10=10$
$2 x=10-10 \quad$ (10 transposed so it comes negative)
$2 x=0 \quad$ (Dividing both sides by 2)
$\mathrm{x}=0$
Therefore the Pair II $=\mathbf{( 0 , 1 0})$

## Verification:

For an ordered pair to be the solution of a given equation it must satisfy the equation.
Putting the $\mathrm{x}=0, \mathrm{y}=10$ in the given equation.
$2 x+y=10$
$2^{*} 0+10=10$
$10=10$

## Hence verified

Pair III when $\mathrm{y}=-2$, then x will be:
$2 x+(-2)=10$
$2 x-2=10$
$2 x=10+2$
$2 x=12 \quad$ (Dividing both sides by 2)
$\mathrm{x}=6$
Therefore the Pair III $=(6,-2)$

## Verification:

For an ordered pair to be the solution of a given equation it must satisfy the equation. Putting the $x=6, y=-2$ in the given equation.
$2 x+y=10$
$2^{*} 6+(-2)=10$
$12+(-2)=10$
$10=10$
Hence verified

Pair IV when $\mathrm{x}=0$, then y will be:
$2 x+y=10$
$2^{*} 0+y=10$
$y=10$
Therefore the Pair IV $=(\mathbf{0}, \mathbf{1 0})$
Verification:
For an ordered pair to be the solution of a given equation it must satisfy the equation.
Putting the $\mathrm{x}=0, \mathrm{y}=10$ in the given equation.
$2 x+y=10$
$2^{*} 0+10=10$
$10=10$
Hence verified

