Question:

A $5.0 \times 10^{\wedge} 4 \mathrm{~kg}$ space probe is traveling at a speed of $11,000 \mathrm{~m} / \mathrm{s}$ through deep space. Retrorockets are fired along the line of motion to reduce the probe's speed. The retrorockets generate a force of $4.0 \times 10^{\wedge} 5$ over a distance of 2500 km . What is the final speed of the probe?
a. $-3.38 \times 10^{\wedge} 3 \mathrm{~J}$
b. zero J
c. $3.38 \times 10^{\wedge} 3 \mathrm{~J}$
d. -345 J
e. 345 J
f.

Solution :
Mass of the space probe, $\mathrm{m}=5.0 \times 10^{4} \mathrm{~kg}$
Speed of the space probe, $u=11,000 \mathrm{~m} / \mathrm{s}$
Force generated by retrorockets $\mathrm{F}=-4.0 \times 10^{5} \mathrm{~N}$ (as it is acting opposite to the direction of probe)
Distance traveled $\mathrm{S}=2500 \mathrm{~km}=2.5 \times 10^{6} \mathrm{~m}$
Thus Using $\mathrm{F}=\mathrm{ma}$
or $\mathrm{a}=\mathrm{F} / \mathrm{m}=-4.0 \times 10^{5} / 5.0 \times 10^{4}=-8 \mathrm{~m} / \mathrm{s}^{2}$
So using $v^{2}-u^{2}=2$ as
or $v^{2}=2 a s+u^{2}$
or $v^{2}=-2 * 8 * 2.5 \times 10^{6}+11000^{2}$
or $\mathrm{v}^{2}=81000000$
or $\mathrm{v}=9000 \mathrm{~m} / \mathrm{s}$ is the final speed of the probe

