A certain airplane has two independent alternators to provide electrical power. The probability that a given alternator will fail on a 1-hour flight is .02 . What is the probability that
(a) both will fail?

Ans.
$P($ Alternator fails $)=0.02$
$P($ Alternator does not fails $)=0.98$
$\mathrm{A}=1^{\text {st }}$ alternator fails
$B=2^{\text {nd }}$ alternator fails
$P(A)=P(B)=0.02$
$P(A B)=P(A)^{*} P(B)$ as $A \& B$ are independent.
$P($ both fail $)=P\left(1^{\text {st }}\right.$ alternator fails and $2^{\text {nd }}$ alternator also fails $)=P(A B)=P(A)^{*} P(B)=0.02^{*} 0.02=$ 0.004
(b)Neither will fail?

Ans.
$\mathrm{P}($ Alternator fails $)=0.02$
$P($ Alternator does not fails $)=0.98$
$\mathrm{A}=1^{\text {st }}$ alternator fails
$\bar{A}=1^{\text {st }}$ alternator does not fails
$B=2^{\text {nd }}$ alternator fails
$\bar{B}=2^{\text {nd }}$ alternator does not fails
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})=0.02$
$\mathrm{P}(\bar{A})=\mathrm{P}(\bar{B})=1-0.02=0.98$
$\mathrm{P}($ Neither will fail $)=\mathrm{P}\left(1^{\text {st }}\right.$ alternator does not fails and $2^{\text {nd }}$ alternator does not fails $)=\mathrm{P}(\bar{A} \bar{B})=$ $\mathrm{P}(\bar{A}) \mathrm{P}(\bar{B})=0.98^{*} 0.98=0.9604$
(c) One or the other will fail? Show all steps carefully.

Ans.
$P($ Alternator fails $)=0.02$
$P($ Alternator does not fails $)=0.98$
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})=0.02$
$\mathrm{P}(\bar{A})=\mathrm{P}(\bar{B})=1-0.02=0.98$
$\mathrm{A}=1^{\text {st }}$ alternator fails
$B=2^{\text {nd }}$ alternator fails
$P($ One or the other will fail $)=P\left(1^{\text {st }} \text { Alternator fails }\right)^{*} P\left(2^{\text {nd }}\right.$ alternator does not fail $)+P\left(2^{\text {nd }}\right.$
Alternator fails) ${ }^{*} \mathrm{P}\left(1^{\text {st }}\right.$ alternator does not fail $)=\mathrm{P}(\mathrm{A}) \mathrm{P}(\bar{B})+\mathrm{P}(\bar{A}) \mathrm{P}(\mathrm{B})=0.02^{*} 0.98+$ $0.02 * 0.98=0.0392$

